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ABSTRACT. Adherence of pathogens to host cells is critical for the initiation of infection and is thus an
attractive target for anti-infective therapeutics and vaccines. In the opportunistic human pathogen
Pseudomonas aerugingshost-cell adherence is achieved predominantly by type IV pili. Analysis of
several clinical strains d?. aeruginosaeveals poor sequence conservation between pilin genes, including
the residues in the receptor-binding site. Interestingly, the receptor-binding sites appear to retain a conserved
surface epitope because Blseudomonasype IV pili recognize the same receptor on the host cell and
cross-reactive antibodies specific for the receptor-binding site exist. Here, we present the crystallographic
analysis of two crystal forms of truncated pilin frofh aeruginosastrain K122-4 AK122-4) at 1.54 and

1.8 A resolution, respectively. TheK122-4 structure is compared to other crystallographically determined
type IV pilin structures and an NMR structure AK122-4 pilin. A comparison with the structure of the
highly divergentP. aeruginosastrain K (APAK) pilin indicates that the receptor-binding loop in both

pilins forms a shallow depression with a surface that is formed by main-chain atoms. Conservation of this
putative binding site is independent of the sequence as long as the main-chain conformation is conserved
and could therefore explain the shared receptor specificity and antibody cross reactivity of highly divergent
Pseudomonasype IV pilins.

The opportunistic pathogeRseudomonas aeruginossa through the type IV pili. Consequently, type IV pili are an
a significant cause of morbidity and mortality in clinical important virulence factor oP. aeruginosa13) and other
settings. Acuté. aeruginosanfections observed in ventila-  Gram-negative pathogenE4 15). Indeed, engineered strains
tor-associated pneumonid—3) and burn wounds4(6) of P. aeruginosathat lack functional pili exhibit reduced
have high mortality rates. Furthermore, in individuals with virulence (6, 17). Also, a humoral response towarl
a compromised or suppressed immune system, such aseruginosaili is protective (8—20). Type IV pili are fiber-
patients with cancef7}, cystic fibrosis 8, 9) and HIV (10), like structures that are assembled fronl5 kDa pilin
P. aeruginosacan establish persistent infections that are monomersZ21, 22). Extensive studies oR. aeruginosailins
frequently fatal through immune pathology, rather than the have shown that each monomer contains a functional
direct actions of the pathogen. Finally, the high innate and receptor-binding site within a disulfide-bound loop region
acquired antibiotic resistance d?. aeruginosaisolates (D-region; 16, 23—29). However, Lee and colleagued?j
complicate treatmentl(, 12). Therefore, the development demonstrated that receptor binding occurs only at the tip of
of anti-infective agents against targets that bypass knownthe pilus, suggesting that the binding site is blocked during
resistance mechanisms is of considerable interest. assembly except for the monomers exposed at the tip. In

P. aeruginosanfection begins with the adherence of the addition to cellular adhesion, the type IV pilus is involved
pathogen to the epithelium, which is primarily achieved in other processes such as twitching motil@,(31), biofilm
formation 32—34), induction of host-cell signals36—37),
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have retained a conserved surface epitope despite the POOtaple 1: Summary of Diffraction and Refinement Statistics

sequence conservation.

Crystal structures of the full-lengtieisseria gonorrhoeae
strain MS11 (44) and P. aeruginosastrain K (PAK; 45)
pilins have been reported, but structure determination of full-
length pilins is complicated by poor solubility. Full-length
pilins contain a long N-terminalk-helix (a1). The first 28
residues @1-N) are exposed and highly hydrophobic,
whereas residues 2%4 (a1-C) pack onto the globular head
domain of the pilin. Truncation ai1-N results in a soluble
pilin monomer that retains the receptor-binding characteristics
of the intact pilin @1; Irvin, R. T., unpublished data). To
date, crystal structures of the truncated PAK pilxPAK;

40) and Vibrio choleraetoxin-coregulated pilin45) have
been reported, as well as an NMR structure of truncated pilin
from P. aeruginosastrain K122-4 AK122-4\MR; 47),
However, the region of greatest interest, the C-terminal
receptor-binding domain, could not be unambiguously as-
signed in the NMR study because of spectral overé&®. (

In this paper, we present the structures of two crystal forms
of the AK122-4 pilin refined to 1.54 and 1.8 A resolution,
respectively. We compare teK122-4 structure with other
crystallographically determined type IV pilin structures and
with the structure o”AK122-4 previously determined using
NMR spectroscopyAK122-MMR; 41), This presents the first
opportunity to compare the receptor-binding sites of two
highly divergent pilins that share receptor specificity (the
V. choleraepilin has no equivalent binding site, and to our
knowledge, receptor specificity for MS11 pilin has not been

diffraction statistics
space group
cella, b, c (A)
cella, g, y (deg)

P1 P2,
40.19, 38.93,37.22  37.30,80.72, 39.13
66.38,111.11, 93.74 90.0, 113.37, 90.0

resolution (A) 371.54 40.5-1.80

observed reflections 62 889 47 085

unique reflections 26 457 16 181

completeness (%) 93.1/88.5 82.8/76.4

averagd/ol)2 16.5/6.6 6.4/2.0

Rsym (%0)2b 5.9/9.6 19.2/39.1
refinement statistics

resolution range (A) 35:41.54 40.5-1.80

number of reflections 25 365 16 158

total protein non-H atoms 1789 1798

solvent molecules 289 89

Ruwork (%0)° 13.8 23.6

Riree (%)4 17.6 25.4

aQverall/highest resolution shel Rsym is the unweightedR value
between symmetry mateSRyo = Y nil|FordNKl)| — [FeadhkD||/
S hiil FondhKI)|. ¢ Ree is the cross validatiorR factor using 5% of
reflections.

100 mM sodium chloride) and reservoir solution (38% w/v
PEG 4000, 100 mM sodium cacodylate at pH 5.8, and 100
mM monobasic potassium phosphate). Diffraction data were
collected on beamline 8.3.1 at the Advanced Light Source
and were processed using MOSFL¥If and SCALA from
the CCP4 suite48). A summary of the diffraction and
refinement statistics is shown in Table 1.

Structure Solution and Refinemeihe structures of both
crystal forms of theAK122-4 pilin were solved using

reported). The comparison supports our earlier hypothesismolecular replacement (MR) and employed the AMoRe

that the type IV pilins ofP. aeruginosehave a binding site
consisting predominantly of main-chain atoms. Conservation

software packaget) of the CCP4 suite48). For the triclinic
crystal form, the molecular replacement search model was

of function is therefore independent of sequence as long asthe globular domain of the MS11 pilin (PDB ID 1AY24),

the main-chain conformation is retained.

EXPERIMENTAL PROCEDURES

Crystallization and Data CollectiorRurification, crystal-
lization, and X-ray diffraction data collection for the triclinic
form of AK122-4 pilin has been reported previousK6).
Briefly, AK122-4 [pilA(A1—28); 41] was expressed peri-
plasmically inEscherichia colias a maltose-binding-protein
(MBP) fusion protein and purified using an amylose column
(46). The purified MBP-K122-4 fusion protein was
trypsinized to releaseAK122-4 pilin from MBP. The
monomericAK122-4 pilin contains four N-terminal residues
(ISEF) from the expression construct followed by residues
29—-150 of K122-4 pilin. MonomericAK122-4 was then
purified by cation-exchange chromatography and crystallized
as described4@). The monoclinic crystal form oAK122-4
pilin crystallized under conditions similar to that of the
triclinic form but in the presence of the receptor analogue
B-D-GalNAc(1—-4)3-p-Gal-OMe. Crystals were grown from
2-uL drops containing equal volumes of proteicarbohy-
drate solution (20 mg mt! AK122-4 and 15.7 mM3-p-
GalNAc(1—4)p-p-Gal-OMe in 10 mM Tris at pH 7.4 and

1 Abbreviations: AK122-4, the truncateBseudomonas aeruginosa
strain K122-4 pilin;AK122-4MR | the truncated K122-4 pilin solved
using NMR; MS11, théNeisseria gonorrhoeastrain MS11 pilin; PAK,
theP. aeruginosastrain K pilin; APAK, the truncated PAK pilin; rmsd,
root-mean-square deviation; NCS, noncrystallographic symmetry; NMR,
nuclear magnetic resonance spectroscopy.

from which nonconserved regions were removed. Analysis
of the self-rotation function revealed a single peak &Bove
the background i = 18C), indicating that there is a
AK122-4 dimer in the unit cell46). To determine the initial
positions of the twoAK122-4 molecules, the top rotation
peak was interpreted as the firsK122-4 molecule and then
fixed. With the top peak fixed, the subsequent 10 rotation
peaks were employed in the translation search to determine
the position of the secondK122-4 pilin molecule relative
to the first. After the initial coordinates for both molecules
were obtained, rigid-body refinement in AMoRe resulted in
a correlation coefficient an® value of 0.490 and 0.468,
respectively.

The MR solution was used as input for ARP/WARBD(
51) to fill in the nonconserved regions that were removed
from the MS11 search model. After removal of the dummy
atoms generated by ARP/WARP, examination of an initial
oa-weighted 62) 2F, — F. electron density map in Xfit53)
allowed for the building of all residues with the exception
of lle 25 and Ser 26 of chain A and Thr 149 and Pro 150 of
chain B. These residues, with the exception of Pro 150B,
were located during subsequent rounds of refinement.
Residue 36 has been reported as Arg in the sequence database
(0i|77636;54). However, our sequencing demonstrated that
residue 36 was in fact an Ala. Alanine is also more consistent
with the preference for a small residue at this position in
other pilin sequenced(), and an Arg would be incompatible
because of steric constraints. Accordingly, we feel that an
Ala is the correct residue at this position. The model was
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refined using REFMACR5), and TLS parameter$§) were
refined prior to refining atomic positions and isotropsc
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thereafter. The tight packing of the pilin in the crystal, weak
affinity for the receptor, and presence of the C-terminal tail

factors. All data were used during the refinement, with 1336 of the pilin monomer (see below) likely prevented complex

reflections being set aside f&%.. calculation 67) andoa
estimation. Engh and Hubeb§) stereochemical restraints

formation. Average factors (main chain/side chain) are 10.6
AZ13.6 &, 12.1 A/16.5 A, and 30.7 A& for chains A and

and loose noncrystallographic symmetry (NCS) restraints B and solvent molecules, respectively. Four residues were
were employed throughout the refinement. Rounds of refine- observed to have dual conformations: Ser 56A, Cys 57A,
ment were followed by model building in Xfit usinga- Cys 142A, and Ser 56B. The alternate conformations of the
weighted density maps. Solvent atoms were located usingcysteines in both crystal forms are believed to result from
ARP/WARP and confirmed with visual inspection. Several radiation damage as was earlier observedfBAK (Hazes,
residues were modeled with alternative side-chain conforma-B., unpublished results). Analysis of the stereochemical
tions based on the shape of the electron density; thequality of the final model using PROCHECK identified that
occupancies of these alternative conformations were refined90.9% of all residues are within the core regions of the
using SHELXL 69). Restrained individual anisotropi8 Ramachandran plot, 8.6% are within allowed regions, and a
values were refined in the final cycle. The validity of the single residue, Ala 65 of chain B, is within a generously
anisotropicB value refinement at this resolution was sup- allowed region. The only significant deviation from stereo-

ported by theRyee Statistic, which dropped from 18.1 to

chemical ideality was the €N—C® angle between Thr 61

17.8%. The refinement statistics are summarized in Tableand Ala 62 of both chains. This region has weak electron

1.

The structure of the monoclinic form of teK122-4 pilin
was solved using the refined structure of tricliti&122-4

density and may exhibit some disorder that could not be
modeled at the present resolution. Diffraction and refinement
statistics for both crystal forms are summarized in Table 1.

pilin (protein only) as the MR search model. The correlation ~ The four AK122-4 monomers in our crystal forms show
coefficient andR value following molecular replacement ~Minimal differences, with root-mean-square deviations (rmsd's)
were 0.721 and 0.312, respectively. The model was refined between all € positions ranging from 0.22 to 0.67 A. Unless
using a similar strategy as that for the triclinic crystal, with Otherwise specified, all analyses presented below are based
661 reflections being set aside By calculation andua on chain A of the high-resolution triclinic crystal form, which
estimation. Occupancies for residues with alternative con- is most clearly defined by its electron density. Both crystal

formations were refined using SHELXL. A summary of forms of AK122-4 contain equivalent NCS-related dimers
refinement statistics is shown in Table 1. in the asymmetric unit. Pilin dimers have also been observed

in the crystal structures of MS1144) and PAK @5);
however, these dimers are distinct from each other and from
our AK122-4 dimers. Also, there is no evidence for a
functional role for type IV pilin dimers, and dimerization of
AK122-4 was not observed in NMR or equilibrium cen-

RESULTS AND DISCUSSION

Quality of the Final ModelsThe structure of the triclinic
crystal form of AK122-4 pilin was refined to 1.54 A

resolution, with a NCS-related pilin dimer (chains A and B) trifugation studies 41). Therefore, the observetlK122-4
in the P1 unit cellRyo and Ryee Were refined to 13.8 and  dimers appear to have no biological relevance and likely arise
17.6%, respectively. In the final model, all residues except pecause of crystallization conditions.

the C-terminal residue (Pro 150) of chain B were observed  Common Architecture of the Type IVa Pilifhe struc-
and 289 water molecules could be modeled in the electrontyres of four type IV pilins have been described in the

density. Five residues were modeled with dual side-chain |iterature. Three have been examined crystallographically:
conformations. These residues are Ser 34, Thr 45, Ser 48the N. gonorrhoeaestrain MS11 pilin 44), the truncated
Ser 56, and Cys 142 and are all located in chain A. Only toxin-coregulated pilin fromV. cholerae(45) and theP.
Lys 140 of chain A did not show electron density for its aeruginosastrain K pilin, both as truncated\PAK; 40) and
side chain, and atoms pasf @ere therefore not included full-length (PAK; 45) pilins. The fourth type IV pilin, the
in the final model. The average factors (main chain/side  AK122-4 pilin, has been examined via NMR methods
chain) are 6.6 A8.3 A>and 6.6 &/8.5 A?for chain Aand  (AK122-4"R: 41). The toxin-coregulated pilin, classified as
B, respectively, and 24.4 %Afor the solvent molecules. g type IVb pilin, differs significantly in size, leader sequence,
Analysis of the stereochemical quality of the final model monomer sequence, and structure fromRBeudomonaand
using PROCHECKE&0) indicated that all residues are inthe  Neisseriatype 1Va pilins @5, 62). Accordingly, it is not
core or allowed regions of the Ramachandran @aj,(and included in the present analysis.
no strained stereochemical conformations were observed. The AK122-4 Crysta' structure exhibits the characteristic
The monoclinic crystal form ofAK122-4 pilin was type IVa pilin fold, with the N-terminala-helix (a1-C)
obtained during cocrystallization trials of the pilin with its packed onto a four-stranded antipargliesheet (Figure 1a).
carbohydrate receptor analog®-GalNAc(1—4)5-p-Gal- The relative positions of the core secondary structure
OMe. The structure also contains an NCS-related dimer elements are well-conserved among the crystal structures
within the asymmetric unit and was refined to 1.8 A (Figure 1b), and structural superimpositioning givés@sd
resolution. The finalRyx and Ryee values are 23.6 and values of 1.6-1.4 A (Table 2). InterestinglyAK122-4 most
25.4%, respectively. The final model consists of all 126 closely resembles MS11 rather tha&#PAK even though
residues in each pilin monomer and 89 solvent molecules. MS11 pilin is of Neisserial rather than Pseudomonal origin.
Unfortunately, no electron density corresponding to bound A closer phylogenetic relationship between K122-4 and
carbohydrate was observed in a difference electron densityMS11 pilin is also evident at the amino acid sequence level
map prior to the addition of solvent molecules or any map with 46.1% sequence identity between K122-4 and MS11
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rmsd of 1.2 A (Table 2). An additional 44.5otation and

3.9 A translation are required to subsequently superimpose
the a helices. Analysis of the 10 individualK122-4\MR
models in the NMR ensemble gave basically the same results.
It has been speculated that the disulfide bond between Cys
57 and Cys 93 may have caused the different hedixeet
packing @1), but this disulfide bond in both X-ray and NMR
structures is actually well-conserved (Figure 2). Because

a)

T N\~J neither cysteine is part of the-helix, it is not obvious from
the structure how this disulfide would change the helix
packing.

In AK122-4NMR ' the o-helix is shifted down by one turn
and is deflected away from the-sheet, especially at the
N-terminal end of thex-helix (Figure 2). As a consequence,
b) the packing of the hydrophobic core is less tighthiK122-

INMR and a conserved hydrogen bond between thefGlIn
32 and the amide nitrogen of Ala 105 is missing. Because
all crystal structures, with several determined at high
resolution, reveal a consistent heligheet packing, we
_\/-( believe that they represent an accurate and relevant confor-

mation of the pilin. The deviation observed AK122-4MR
could be due to one or more incorrect NOE assignments.
However, a comparison of the NMR restraint data with both
the NMR and X-ray structures suggests that this is not the
case. There are also data that indicate structural flexibility
of the pilin monomer. Molecular models of type IV pili
generated using the crystal structuresA®#AK and MS11
Ficure 1: Structure of theAK122-4 pilin and the common tertiary only explain X—rgy f't?er diffraction pat.terns When the
structure of the type IVa pilins. (@)K122-4 pilin monomer. The  globular domain is omitted from calculations of simulated
N-terminala-helix (a1-C) is in blue; the3-sheet is in green; and  diffraction patterns §3). This suggests a disorder of the
the coil regions are in purple. The two disulfide bridges observed globular domain relative to the helical backbone. Further-

in AK122-4, between Cys 57 and 93 and between Cys 129 and : il ; A
142, are shown in yellow. (b) Superimposition of th&122-4 more,Neisserigpilins can be proteolytically cleaved in vivo

(blue), APAK (red;40), and MS11 (oranget4) pilins, highlighting after residue 39 to release a soluble pilin mononé).(

the conserved structural architecture of the type IVa pilins. In both Residue 39 is in the middle of the-helix (a1), and this

panels, the conserved receptor-binding domain oP$eudomonas  peptide bond would not be accessible for proteolytic cleavage

pilins is boxed. All figures were produced using MOLSCRIFD)( whenal is tightly packed against thsheet as seen in the

and Raster3DAQ). crystal structures. It is therefore possible that under physi-
ological conditions thegs-sheet is able to move relative to

Table 2: Structural and Sequence Similarity between the Type Iva thea-helix, whereas the high concentrations of precipitants

Pilins? used for crystallization may have stabilized the tighter
AK122-4  AK122-4MR  MS11  APAK pa_lcking. F_urther research will be required to directly address
AK122-4 1.2/37 1.0/88  1.2/59 this question.
'\AA*éllle'NR a%g/"/o 42 4.9/88 1-%28 The loop connecting1-C to thes-sheet (thaxs-loop) is
b b . . ' :
APAK 29% 40% 27% highly variable in sequence and structure. In PAK, a small

pB-sheet follows1-C, whereas in MS11, the equivalent space

SUPPQOS (Dijkstra, B. W., unpublished results). Above the diagonal: is occupied by a single helical turn that is glycosylated at

rmsd (A)/number of residues superimposed. Below the diagonal: Ser 63. In models for the type IV pilus fibe4Q, 4_4' 62_)’
percentage of sequence identity between structurally superimposedthese structural features block the receptor-binding site of a

residues. pilin monomer in the preceding turn of the pilus fiber. It
has been proposed that this may explain why receptor binding
versus 38.8% sequence identity between K122-4 and PAKonly occurs at the tip of the pilugl(). AK122-4 pilin does
(these values are 36.3 and 26.1%, respectively, for thenot have the smalf-sheet of PAK pilin, and while Thr 64
globular domain sequence starting at residue 29; Table 2).of AK122-4 is withn 5 A of the glycosylated Ser 63 of
These observations indicate that the large sequence variation®S11,P. aeruginosatrain K122-4 pilin is not glycosylated
seen between pilin genes in differdhtaeruginosadsolates (65; Irvin, R. T., unpublished results). Therefore, the loop
originate at least in part from horizontal gene transfer. of AK122-4 does not appear to provide a bulky group that
Surprisingly, a global rmsd could not be calculated can block receptor-binding sites along the flanks of the pilus.
between theAK122-4 structures determined by crystal- Two alternative, though speculative, mechanisms for oc-
lography and NMR because of differential packing of the cluding the receptor-binding domain in the pilus fiber can
helix and sheet in the two structures (Figure 2). If we first be envisioned. The first involves the C-terminal extension.
superimpose the averagd122-MMR structure ontaAK122-4 While other P. aeruginosapilins have only two to three
based on theip-sheets, 37 residues superimpose with an residues following the C-terminal cysteine, K122-4 has eight

a Superposition of the €atoms of the various pilins performed using
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FiGURE 2: Stereoview of the superimposed model#\éf122-4 as determined by NMR (red and orange) and X-ray crystallography (green

and purple). Both structures were superimposed based upongtisbiets, showing the deflection afl.-C in the NMR structure. The
disulfide bond between Cys 57 and Cys 93, shown in yellow, superimposes well and is therefore unlikely to have caused the helix deflection
as previously proposedtl).

residues40). NMR observations indicate that the C-terminal turn that exposes only main-chain atoms, and the relative
extension is highly disordered in solutiod1j, and no orientation of the twg turns is such that a shallow solvent-
intramolecular interactions are seen in our crystal structures.exposed pocket is formed that is dominated by main-chain
It is conceivable that the C-terminal extension is disordered atoms 40; Figures 1 and 3). Several carbonyl oxygen and
when exposed at the pilus tip, providing access to the bindingamide nitrogen atoms of the main chain point up into the
sites, whereas it may adopt a conformation that blocks the pocket and could potentially act as hydrogen-bonding
binding sites when buried upon pilus assembly. The secondpartners for hydroxyl groups of the carbohydrate ligand. This
possible mechanism is that the unstructusgiloop could led to the hypothesis that the pocket formed by the Bvo
adopt an alternate conformation during pilus assembly thatturns forms a unique main-chain-atom-dominated receptor-
would occlude the receptor-binding domain. binding site 40). Shared receptor specificity and antibody

Receptor-Binding DomaimMultiple studies using a variety ~ cross reactivity by highly divergent pilins could then result
of techniques have localized the receptor-binding domain of from conservation of the main-chain structure because of
the P. aeruginosatype IV pilins to a 14-19-residue  evolutionary constraints.

disulfide-bound loop at the C terminus of the protein (the  To better understand the conformational determinants of
D-region). Antibodies targeting the D-region but not other the D-region, we looked at conserved properties of Rhe
regions of the pilin are able to inhibRseudomonaadher-  aeruginosapilin sequences. There are seven strictly con-
ence @4, 26). Mutations in the D-region do not affect pilus  served residues in the globular domairPstudomonagilins
biogenesis, but both cell binding and virulence were signifi- (40); in K122-4, these residues are Arg 30, Lys 44, Thr 98,
cantly reduced ¥6). Further, peptides that represent the Trp 127, Cys 129, Pro 139, and Cys 142. Within the
disulfide-bound D-region competitively inhibit pilus binding  D-region, only the two cysteines that form the disulfide and
to buccal epithelial cells25), and direct interaction between  proline 139 that starts the secqfitlirn are strictly conserved.
such a peptide and a receptor analogue has been demorpisulfide bonds and proline residues restrict the conforma-
strated by NMR 29). It has also been shown that the type- tional flexibility of peptides and therefore likely play a
IV pilins bind to the same receptoRT, 42) and display a  structural role in defining the conformation of the D-region.
conserved antigenic epitop2d). The latter observation has  Studies have indeed shown the importance of the disulfide
led to the development of a strain-independent peptide-basechond for structure and function of synthetic receptor-binding
vaccine candidate, using a consensus sequence derived frobop peptides 8, 29, 66-69). In the pilin structures, the
several D-region sequenceks(-20). side chains of the cysteine and proline residues are buried
The structure of the D-region was first studied by NMR  between the loop and the core of the protein. This also points
using synthetic peptides with sequences derived from severalto a structural rather than a functional role because the
highly divergentP. aeruginosastrains 28, 65, 66). These residues cannot directly interact with the receptor but instead
studies showed that all peptides contained fmoirns and define the loop-protein packing interface. Tyr 137 also
atype I turn (residues 134137) followed by a type Il turn  contributes to this packing interface, and an aromatic amino
(residues 139142). NMR studies of a D-region peptide in  acid is conserved at this position in the loafd), Further-
complex with a receptor analogue or a cross-reactive more, in theAK122-4 structure, the strictly conserved Arg
antibody indicated little structural rearrangement upon 30 stabilizes the D-region through hydrogen bonds between
complex formationZ9). Apparently, these peptides have an its N¢ and N'! atoms and the carbonyl oxygen of Lys 136
“intrinsic propensity” to adopt a native-like conformation (Figure 3a). The conserved Trp 127 and Lys 44 interact with
despite the high sequence divergence. each other, forming a hydrophobic stacking interaction
The APAK crystal structure confirmed the presence of the between the-helix ands-sheet. This interaction is important
two f turns in the D-region with the main difference being to stabilize the globular domain structure but should not
a somewhat different relative orientation of tfieturns. directly influence the D-region structure. Finally, Thr 98 is
Interestingly, the3 turn geometry creates one face of the exposed to the solvent and not close to the D-region. Its
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a.

PAK K1224

Ficure 3: Receptor-binding domain of the type IVa pilins. (a) Stereoview ofAKA4 22-4 receptor-binding domain (boxed in Figure 1a).

All residues of the receptor-binding loop and the conserved Arg 30 are shown in a ball-and-stick representation. (b) Stereorepresentation
of the superimposed receptor-binding loopAd{122-4, APAK, and MS11 pilins (boxed in Figure 1b). Backbone atom colors are yellow,
magenta, and orange, respectively. The fivturns are labeled | and I, and the peptide flip at residue 14ARAK is labeled with an

asterisk. (c) CPK representation of the PAK and K122-4 D-regions showing the surface-exposed atoms. Main-chain atoms of the residues
that form the twq3 turns are in darker colors, highlighting the conserved surface of the proposed receptor-binding site. The peptide flip has
again been highlighted with an asterisk.
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moment unclear. pilus-associated functions is currently under investigation.
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